Strong Positive Recurrence for Diffeomorphisms

Jérôme BUZZI (CNRS Orsay) https://jbuzzi.wordpress.com

with Sylvain CROVISIER and Omri SARIG

Beyond Uniform Hyperbolicity in Bedlewo

April 28, 2023

- Exponential mixing for MMEs of surface diffeomorphisms
- 2 SPR property for diffeomorphisms
- 3 Statistical properties of SPR diffeomorphisms
- MMEs of SPR diffeomorphisms
- 5 Sketch of proofs

6 Conclusion

Spectral gap: Exponential mixing for smooth surface diffeomorphisms

 $f \in \text{Diff}^r(M)$ with M a closed d-dimensional manifold

Classical variational principle: $h_{top}(f) = \sup_{\mu \in \mathbb{P}_{erg}(f)} h(\mu)$

A measure maximizing the entropy (MME) is $\mu \in \mathbb{P}_{ ext{erg}}(f)$ with $h(\mu) = h_{ ext{top}}(f)$

If $r = \infty$, some MME exists (Newhouse) If $r = \infty$, d = 2, $h_{top}(f) > 0$, and top. transitive, unique MME (B-Crovisier-Sarig)

Theorem (B.-Crovisier-Sarig)

Assume that $r = \infty$, d = 2, topological mixing, and $h_{top}(f) > 0$.

Then the unique MME μ is exponentially mixing for Hölder functions, ie

For any exponent $0 < \alpha \leq 1$, there is $\kappa < 1$ such that

$$\forall u, v \in C^{\alpha}(M) \int u \circ f^{n} \cdot v \, d\mu - \int_{M} u \, d\mu \int_{M} v \, d\mu = O(\kappa^{n})$$

Goal

A notion of hyperbolicity:

- sufficiently relaxed to hold beyond uniform hyperbolicity
- strong enough to retain "spectral gap"

Nonuniformly hyperbolic measures

 $f \in \operatorname{Diff}^r(M^d)$ with r > 1 and M a closed d-dim. Riemannian manifold

 $\mu \in \mathbb{P}_{\mathsf{erg}}(f)$ ergodic (invariant Borel probability) measure

Definition

Lyapunov spectrum: $\sigma_L(x) := \{\lim_{n \to \pm \infty} \frac{1}{n} \log \|D_x f^n \cdot v\| : v \in T_x M \setminus 0\}$ Oseledets spaces: $E_x^{\lambda} := \{v \in T_x M \setminus 0 : \lim_{n \to \pm \infty} \frac{1}{n} \log \|D_x f^n v\| = \lambda\}$ Lyapunov exponents: $\lambda^1(x) \ge \lambda^2(x) \ge \cdots \ge \lambda^d(x)$ For $\mu \in \mathbb{P}(f), \ \lambda^j(\mu) := \int \lambda^j(x) d\mu$

Definition (Pesin hyperbolicity) $\nu \in \mathbb{P}(f)$ is hyperbolic if ν -ae $0 \notin \sigma_L(x)$

 $\nu \in \mathbb{P}(f)$ is hyperbolic of saddle type if additionally ν -ae $\lambda^1(x) > 0 > \lambda^d(x)$

Key observation (Katok) If $\mu \in \mathbb{P}_{erg}(f)$, $h(\mu) > 0$ and d = 2, Ruelle's inequality shows μ hyperbolic saddle type More precisely, $\lambda^{1}(\mu) \ge h(\mu) > 0 > -h(\mu) \ge \lambda^{2}(\mu)$

Pesin theory of nonuniform hyperbolicity

Definition

For $0 < \epsilon < \chi$ and $C \ge 1$, the Pesin block $\Lambda_{\chi}(C, \epsilon)$ is the set of $x \in M$ for which there is $T_x M = E \oplus F$ satisfying:

$$\begin{aligned} \forall n \geq 0 \ \forall k \in \mathbb{Z} \quad \|Df^n|_{Df^k(E)}\| \leq C e^{\epsilon|k|} \exp\left(-\chi n\right) \\ \forall n \geq 0 \ \forall k \in \mathbb{Z} \quad \|Df^{-n}|_{Df^k(F)}\| \leq C e^{\epsilon|k|} \exp\left(-\chi n\right) \end{aligned}$$

Fact

$$\Lambda_{\chi}(\mathcal{C},\epsilon)$$
 is compact with $f^{\pm 1}(\Lambda_{\chi}(\mathcal{C},\epsilon)) \subset \Lambda_{\chi}(\mathcal{C}e^{\epsilon},\epsilon)$

Invariant $K \Subset M$ is hyperbolic iff $K \subset \Lambda_{\chi}(C, \epsilon)$ for some $\chi > 0$ and arb. small $\epsilon > 0$.

Lemma (Oseledets-Pesin reduction)

If
$$\mu \in \mathbb{P}(f)$$
 χ -hyperbolic ie μ -ae { $\lambda^{j}(x) : j = 1, ..., d$ } $\cap [-\chi, \chi] = \emptyset$ then
 $\forall \epsilon > 0 \exists C > 1 \ \mu(\Lambda_{\chi}(C, \epsilon)) > 1 - \epsilon$

Theorem (Pesin local invariant manifolds)

For $\chi > 0$ and $0 < \epsilon \le \epsilon(f, \chi)$, $W^{s}(x)$, $W^{u}(x)$ are C^{r} -immersions, C^{0} on $x \in \Lambda_{\chi}(C, \epsilon)$

SPR property for diffeomorphisms

 $f \in \text{Diff}^r(M^d)$ with r > 1 and M closed d-dimensional manifold $(d \ge 2)$

Definition

For $0 < \epsilon < \chi$ and $C \ge 1$, the Pesin block $\Lambda_{\chi}(C, \epsilon)$ is the set of $x \in M$ for which there is $T_x M = E \oplus F$ satisfying:

 $\forall n \ge 0 \ \forall k \in \mathbb{Z} \quad \|Df^n|_{Df^k(E)}\| \le Ce^{\epsilon|k|} \exp\left(-\chi n\right) \\ \forall n > 0 \ \forall k \in \mathbb{Z} \quad \|Df^{-n}|_{Df^k(E)}\| \le Ce^{\epsilon|k|} \exp\left(-\chi n\right)$

Definition (B-Crovisier-Sarig)

 $f \in \text{Diff}^{r}(M^{d})$ is strongly positively recurrent (or SPR) if there is $\chi > 0$ such that For any $\epsilon > 0$, there are $h < h_{top}(f)$, C > 1, and $\tau > 0$ such that $\forall \mu \in \mathbb{P}_{erg}(f) \ h(\mu) > h \implies \mu(\Lambda_{\chi}(C, \epsilon)) > \tau$

Theorem (B-Crovisier-Sarig) Let $f \in \text{Diff}^{\infty}(M^2)$ with M^2 closed surface If $h_{top}(f) > 0$, then f is strongly positively recurrent

Statistical properties

Theorem (B-Crovisier-Sarig) Let $f \in \text{Diff}^{1+}(M^d)$ be SPR with MME μ ($\mu \in \mathbb{P}_{erg}(f)$ and $h(\mu) = h_{top}(f)$) If μ is strongly mixing then it is exponentially mixing for Hölder functions, ie For any exponent $0 < \alpha \le 1$, there is $\kappa < 1$ such that

 $\forall u, v \in C^{\alpha}(M) \int u \circ f^{n} \cdot v \, d\mu - \int_{M} u \, d\mu \int_{M} v \, d\mu = O(\kappa^{n})$

Theorem (B-Crovisier-Sarig)

Let
$$f\in {
m Diff}^{1+}(M^d)$$
 be SPR with $\mu\in {\mathbb P}_{
m erg}(f)$ such that $h(\mu)=h_{
m top}(f)$

If μ is strongly mixing then, for Hölder-continuous functions we have:

- Central limit theorem (CLT)
- Identification of the variance and characterization of its vanishing
- Large deviations
- Almost sure invariance principle and its consequences (law of iterated logarithm, arcsine law, law of records)

Remark. There are statements for general (ie periodic) ergodic MMEs

MMEs of SPR diffeomorphisms: existence and finiteness

Theorem (B-Crovisier-Sarig)

Let $f \in \text{Diff}^{1+}(M^d)$ be SPR with $h_{top}(f) > 0$

If f is SPR then f admits a nonzero, finite number of ergodic MMEs m_1, \ldots, m_K

Remark. New proof of the finiteness of MMEs [B-CROVISIER-SARIG ANNALS 2022]

Theorem (Effective intrinsic ergodicity, B-Crovisier-Sarig) Let $f \in \text{Diff}^{1+}(M^d)$ be SPR with $h_{\text{top}}(f) > 0$ with a unique MME m given $0 < \alpha \le 1$, there is C > 0 such that for any $\mu \in \mathbb{P}_{\text{erg}}(f,$ $\forall u \in C^{\alpha}(M) |\int u \, d\mu - \int u \, dm | \le C ||u||_{C^{\alpha}} \sqrt{h_{\text{top}}(f) - h(\mu)}$

Remark.

- Effective intrinsic ergodicity is a quantitative version of the softer

USC of $h : \mathbb{P}(f) \to \mathbb{R}$ and \exists unique MME *m* gives $\mu \stackrel{*}{\longrightarrow} m$ as $h(\mu) \to h_{top}(f)$

- Proved for SFT by $[\mathrm{S.\ KADYROV\ }2015];$ for Markov shifts by $[\mathrm{R\ddot{u}hr-Sarig,\ }\mathrm{ArXiV}]$

MMEs of SPR diffeomorphisms: Lyapunov exponents

 $\lambda^1(x) \geq \cdots \geq \lambda^d(x)$: pointwise Lyapunov exponents (repeated according to multiplicity) $\lambda^j(\mu) := \int_X \lambda^j(x) d\mu$: average Lyapunov exponents (repeated according to multiplicity) $J^u(\mu) := \sum_{j=1}^d \max(\lambda^j(\mu), 0)$: sum of positive exponents

Theorem (B-Crovisier-Sarig) Let $f \in \text{Diff}^{1+}(M^d)$ of a closed manifold f is SPR if and only if $\exists \chi > 0$ such hat the following holds:

For any $\mu_k \in \mathbb{P}_{erg}(f)$ with $h(\mu_k) \to h_{top}(f)$ and $\exists \lim_n \mu_n =: \mu$

- $\exists i = i(\mu)$ such that $\lambda^i(x) > \chi > 0 > -\chi > \lambda^{i+1}(x) \mu$ -a.e.
- **2** $\lim_k J^u(\mu_k)$ exists and is equal to $J^u(\mu)$

Applying this to $f \in \text{Diff}^{\infty}(M^2)$: Newhouse USC. Since $r = \infty$, $h(\mu) = h_{\text{top}}(f)$ Ruelle inequality. Since d = 2, μ -ae $\lambda^1(x) \ge h_{\text{top}}(f) \ge -h_{\text{top}}(f) \ge \lambda^2(x)$ B-Crovisier-Sarig (Invent. Math. 2022). If $r = \infty$ and d = 2, $\lim_k \lambda^1(\mu_k) = \lambda^1(\mu)$ Corollary (B-Crovisier-Sarig). Any $f \in \text{Diff}^{\infty}(M^2)$ with $h_{\text{top}}(f) > 0$ is SPR

MMEs of SPR diffeomorphisms: Lyapunov exponents

Theorem (B-Crovisier-Sarig) Let $f \in \text{Diff}^{1+}(M^2)$ of a closed surface with $h_{\text{top}}(f) > 0$ f is SPR if and only if the following holds:

(*) For any $\mu_k \in \mathbb{P}_{erg}(f)$, $h(\mu_k) \to h_{top}(f)$ and $\exists \lim_n \mu_n =: \mu$ $\lim_k \lambda^1(\mu_k)$ exists and is equal to $\lambda^1(\mu)$

Theorem (B-Crovisier-Sarig) Let $f \in \text{Diff}^{\infty}(M^2)$ of a closed surface Assume $h_{\text{top}}(f) > 0$ and \exists a unique MME m If f is SPR, there is C > 0 such that for all $\mu \in \mathbb{P}_{\text{erg}}(f)$, (**) $|\lambda^1(\mu) - \lambda^1(m)| \leq C\sqrt{h_{\text{top}}(f) - h(\mu)}$

Remark

The above is a rigidity result: if, when the entropy converges to $h_{top}(f)$, the exponent is continuous (*) then it must be $\frac{1}{2}$ -Hölder continuous (**).

Sketch of proof: from continuity of exponents to SPR

$$\begin{split} \widehat{M} &:= \{(x, E) : x \in M, \ E \ 1\text{-dim subspace of } T_xM\} \text{ and } \widehat{f}(x, E) = (f(x), D_xf(E)) \\ \widehat{\varphi} : \widehat{M} \to \mathbb{R} \ \widehat{\varphi}(x, E) &:= \log |D_xf|E| \\ \mu \in \mathbb{P}(f) \text{ hyperbolic of saddle type (a.e. } \lambda^1(x) > 0 > \lambda^2(x)) \end{split}$$

- 1. The ergodic lifts of hyperbolic $\mu \in \mathbb{P}_{erg}(f)$ to $\mathbb{P}_{erg}(\widehat{f})$ are $\widehat{\mu}^+ := \int_M \delta_{(x, E_x^+)} d\mu(x)$ and $\widehat{\mu}^- := \int_M \delta_{(x, E_x^-)} d\mu(x)$
- 2. The ergodic lifts $\hat{\mu}$ of μ to $\mathbb{P}(\hat{f})$ are $\hat{\mu} = \int (1 - a(\xi))\hat{\mu}_{\xi}^{+} + a(\xi)\hat{\mu}_{\xi}^{-} d\xi$ if $\mu = \int \mu_{\xi} d\xi$ ergodic decompositon Moreover, $\lambda^{1}(\mu) = \hat{\mu}^{+}(\hat{\varphi}) > 0$ and $\lambda^{2}(\mu) = \hat{\mu}^{-}(\hat{\varphi}) < 0$ 3. If $\lim_{k} \lambda^{1}(\mu_{k}) = \lambda^{1}(\mu) > 0$ then $\hat{\mu}_{k}^{+} \stackrel{*}{\longrightarrow} \hat{\mu}^{+}$ (Computation) 4. $\forall \alpha > 0 \exists h < h_{top}(f) \exists N \ge 1 \forall \mu \in \mathbb{P}_{erg}(f)$ $h(\mu) > h \implies \mu \left(\{x \in M : \|Df^{N}|E_{x}^{+}\| > e^{N \cdot h_{top}(f)/2} \} \right) > 1 - \alpha$ 5. $\forall \epsilon > 0 \exists h < h_{top}(f) \exists C > 0 \forall \mu \in \mathbb{P}_{erg}(f)$ $h(\mu) > h \implies \mu \left(\Lambda_{htop}(f) \exists C, \epsilon \right) > 1 - \epsilon$

Pliss Lemma. ϵ -tempered envelope.

Sketch of proof: Statistical properties, effective intrinsic ergodicity

Markov shift defined by a countable directed graph G = (V, E): $\Sigma := \{ \alpha \in V^{\mathbb{Z}} : \forall n \in \mathbb{Z} \ (\alpha_n, \alpha_{n+1}) \in E \}$ with $\sigma : (\alpha_n)_{n \in \mathbb{Z}} \mapsto (\alpha_{n+1})_{n \in \mathbb{Z}}$

Definition (Vere-Jones, Gurevič, Sarig,...) The Markov shift Σ is **SPR** if there is $V_0 \Subset V$, $h_0 < h_{TOP}(\sigma)$, $\tau_0 > 0$ such that $\forall \mu \in \mathbb{P}_{erg}(\sigma) \ h(\mu) > h_0 \implies \mu(\{\alpha \in \Sigma : \alpha_0 \in V_0\}) > \tau_0$

Theorem (Bowen, Cyr-Sarig, Gouëzel, Parry-Pollicott, Ruelle, Ruhr-Sarig, Sinai,...) MMEs of an SPR Markov shift have "good statistical properties"

Theorem (Sarig, Benovadia) For all $f \in \text{Diff}^{1+}(M^d)$ and $\chi > 0$: \exists Markov shift (Σ, σ) and $\pi : \Sigma \xrightarrow{C^{\alpha}} M f \circ \pi = \pi \circ \sigma$ with "good properties" for $\mathbb{P}_{\chi}(f)$

Lemma. $C(x) := \text{Oseledets-Pesin}; q(x) := \limsup_{n \to \infty} e^{-2\epsilon |n|} ||C(f^n(x))^{-1}||$ $\forall K > 0 \{ \alpha_0 : \alpha \in \Sigma^{\#}, \pi(\alpha) = x \text{ with } q(x) < K \} \text{ is finite}$

Lemma. If $x \in \Lambda_{\chi}(C, \epsilon)$, then $q(x) \leq q_0(\chi, \epsilon, C)$

Theorem. If f is SPR then it has good statistical properties wrt its MMEs

Conclusion: Strong Positive Recurrence

Summary

- A notion for $\text{Diff}^{1+}(M^d)$ giving:
 - existence and finiteness of MMEs
 - effective intrinsic ergodicity
 - good statistical properties of MMEs
- characterized in terms of exponents of measures with $h(\mu)
 ightarrow h_{
 m top}(f)$
- It holds for all $\mathrm{Diff}^\infty(M^2)$ with $h_{\mathrm{top}}(f)>0$

Comments

- generalization to equilibrium measures for $\psi \in C^+(M)$: yes, SRB???
- C^r smoothness for measures with $h(\mu) > \log \operatorname{Lip}(f)/r???$ (see Burguet)
- Entropy-hyperbolic diffeomorphisms in high dimension???
- Alternate route via anisotropic Hilbert spaces???

Conclusion

Thank you

Strong Positive Recurrence for Diffeomorphisms