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Exponential mixing for MMEs of surface diffeomorphisms
Spectral gap: Exponential mixing for smooth surface diffeomorphisms

f € Diff" (M) with M a closed d-dimensional manifold
Classical variational principle: htop(f) = sup,,cp,,(r) h(1t)
A measure maximizing the entropy (MME) is p € Perg(f) with h(p) = heop(f)

If r = 0o, some MME exists (Newhouse)
If r =00, d =2, hop(f) > 0, and top. transitive, unique MME (B-Crovisier-Sarig)

Theorem (B.-Crovisier-Sarig)
Assume that r = oo, d = 2, topological mixing, and hyp(f) > 0.
Then the unique MME i is exponentially mixing for Holder functions, ie
For any exponent 0 < a < 1, there is k < 1 such that
Vu,v e CHM) [uof vdu— [, udy [, vdu= O(x")

Goal

A notion of hyperbolicity:
- sufficiently relaxed to hold beyond uniform hyperbolicity
- strong enough to retain “spectral gap”
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SPR property for diffeomorphisms
Nonuniformly hyperbolic measures

f € Diff"(M9) with r > 1 and M a closed d-dim. Riemannian manifold

i € Perg(f) ergodic (invariant Borel probability) measure

Definition

Lyapunov spectrum: o(x) := {limy—+o0 £ log || Dxf".v| : v € T,M\ 0}
Oseledets spaces: E. := {v € TuM\0: limy1o0 log || Def"v| = A}
Lyapunov exponents: \'(x) > )\Z(X) > > M (x)

For u € P(f), N(u) := [ N(x

Definition (Pesin hyperbolicity)
v € P(f) is hyperbolic if v-ae 0 ¢ o (x)
v € P(f) is hyperbolic of saddle type if additionally v-ae A\}(x) > 0 > A9(x)

Key observation (Katok)
If i € Perg(f), h(n) > 0 and d = 2, Ruelle’s inequality shows p hyperbolic saddle type

More precisely, \*(z2) > h(p) > 0 > —h(p) > N(p)
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SPR property for diffeomorphisms

Pesin theory of nonuniform hyperbolicity

Definition
For 0 < e < x and C > 1, the Pesin block A, (C,€) is the set of x € M for which there is
T«M = E & F satisfying:

Vn>0Vk €Z |DFf"|ppuell < Ceexp (—xn)

Vn>0Vk €Z ||DF "|pppll < Ceexp (—xn)

Fact
A (C,€) is compact with FE1(A(C,€)) C A (Ce®,€)
Invariant K € M is hyperbolic iff K C A (C,¢€) for some x > 0 and arb. small ¢ > 0.

Lemma (Oseledets-Pesin reduction)
If i € P(f) x-hyperbolic ie p-ae {N(x): j=1,...,d}N[=x,x] = 0 then
Ve>03C>1p(A(C,e)) >1—¢

Theorem (Pesin local invariant manifolds)
For x >0 and 0 < ¢ < ¢(f,x), W(x), W¥(x) are C"-immersions, C° on x € A, (C,¢)
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SPR property for diffeomorphisms

SPR property for diffeomorphisms
f € Diff"(M9) with r > 1 and M closed d-dimensional manifold (d > 2)

Definition
For 0 < e < x and C > 1, the Pesin block A, (C,¢€) is the set of x € M for which there is
T«<M = E @ F satisfying:

Vn>0VkeZ ||Df7|pgll < Ce*lexp (—xn)

Vn2>0Vke€Z ||IDf"ppgll < Ce!*l exp (—xn)

Definition (B-Crovisier-Sarig)
f € Diff"(M9) is strongly positively recurrent (or SPR) if there is x > 0 such that
For any € > 0, there are h < hwp(f), C > 1, and 7 > 0 such that

Vi € Perg(f) h(p) > h = (A (C,€)) > 7

Theorem (B-Crovisier-Sarig)
Let f € Diff"°(M?) with M? closed surface

If heop(f) > 0, then f is strongly positively recurrent
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Statistical properties of SPR diffeomorphisms

Statistical properties

Theorem (B-Crovisier-Sarig)
Let f € Diff'*(M9) be SPR with MME p (1 € Peg(f) and h(1s) = heop(f))

If 1 is strongly mixing then it is exponentially mixing for Hélder functions, ie
For any exponent 0 < a < 1, there is k < 1 such that

Vu,ve C*(M) [uof"-vdu— [,udu [, vdu= O(k")

Theorem (B-Crovisier-Sarig)

Let f € Diff'*t(M?) be SPR with ji € Perg(f) such that h(p) = hiop(f)

If v is strongly mixing then, for Hélder-continuous functions we have:
o Central limit theorem (CLT)
o Identification of the variance and characterization of its vanishing
o Large deviations

@ Almost sure invariance principle and its consequences (law of iterated logarithm,
arcsine law, law of records)

Remark. There are statements for general (ie periodic) ergodic MMEs
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MMEs of SPR diffeomorphisms

MMEs of SPR diffeomorphisms: existence and finiteness

Theorem (B-Crovisier-Sarig)
Let f € Diff**(M?) be SPR with heop(f) > 0

If f is SPR then f admits a nonzero,finite number of ergodic MMEs my, ..., mk

Remark. New proof of the finiteness of MMEs [B-CROVISIER-SARIG ANNALS 2022]

Theorem (Effective intrinsic ergodicity, B-Crovisier-Sarig)
Let f € Diff**(M?) be SPR with hwop(f) > 0 with a unique MME m

given 0 < a < 1, there is C > 0 such that for any p € Perg(f,
Vue €M) |f udp— [ udm]| < Clullca/hron(F) = h(12)

Remark.
- Effective intrinsic ergodicity is a quantitative version of the softer

USC of h: P(f) — R and 3 unique MME m gives y — m as h(j1) — heop(f)
- Proved for SFT by [S. KADYROV 2015]; for Markov shifts by [RUHR-SARIG, ARXIV]
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MMEs of SPR diffeomorphisms

MMEs of SPR diffeomorphisms: Lyapunov exponents

A(x) > -~ > A9(x): pointwise Lyapunov exponents (repeated according to multiplicity)

N(p) = fX M (x) du: average Lyapunov exponents (repeated according to multiplicity)
JU(p) = 27:1 max(M (), 0): sum of positive exponents

Theorem (B-Crovisier-Sarig)
Let f € Diff**(M?) of a closed manifold
f is SPR if and only if 3x > 0 such hat the following holds:

For any pux € Perg(f) with h(pk) — hop(f) and 3limy pn =: p
© 3i = i(p) such that N'(x) > x >0 > —x > A" (x) p-a.e.
Q@ limy J(uk) exists and is equal to J"(u)

Applying this to f € Diff> (M?):

Newhouse USC. Since r = oo, h() = hiop(f)

Ruelle inequality. Since d = 2, pi-ae A'(x) > hrop(f) > —hiop(f) > X3(x)
B-Crovisier-Sarig (Invent. Math. 2022). If r = 0o and d = 2, limx A\'(px) = A (1)

Corollary (B-Crovisier-Sarig ). Any f € Diff*°(M?) with hwop(f) > 0 is SPR
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MMEs of SPR diffeomorphisms

MMEs of SPR diffeomorphisms: Lyapunov exponents

Theorem (B-Crovisier-Sarig)

Let f € Diff**(M?) of a closed surface with hwp(f) > 0

f is SPR if and only if the following holds:

(*) For any i € Perg(f), h(pk) = heop(f) and Ilim, pn =:
lime A (k) exists and is equal to ()

Theorem (B-Crovisier-Sarig)
Let f € Diff°**(M?) of a closed surface
Assume hyop(f) > 0 and 3 a unique MME m

If f is SPR, there is C > 0 such that for all pi € Perg(f),

(**) [N (1) = N (m)| < Cy/hioo(F) — h(n)

Remark

The above is a rigidity result: if, when the entropy converges to hwp(f), the exponent is
continuous (*) then it must be }-Hélder continuous (**).
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Sketch of proofs

Sketch of proof: from continuity of exponents to SPR

M = {(x,E): x € M, E 1-dim subspace of T,M} and ?(X, E) = (f(x), D«f(E))
P:M—=R @(x,E) :=log |Dif|E]|
© € P(f) hyperbolic of saddle type (a.e. A'(x) > 0 > A?(x))

1. The ergodic lifts of hyperbolic p € Perg(f) to IP’erg(r?) are
"= [y ey du(x) and i~ = [, O£y dr(x)

2. The ergodic lifts fi of p to P() are

= [(1—a(&)if +a(€)ig d€ if p = [ pe d€ ergodic decompositon
Moreover, A'(11) = it (@) > 0 and M(p) = ($) < 0
3. If limg AM(ux) = A (1) > 0 then fif — ™ (Computation)
8.V > 0 3h < hup(f) 3N > 1 Vpu € Porg(F)
h(p) > h = u ({x e M ||DFY|ES| > eN'hmp“)/z}) >1-a

5. Ve > 0 3h < hiop(F) IC > 0 Vi € Perg(F)
h(p) >h = p (/\hmp(,c)/3(C7e)) >1—c¢
Pliss Lemma. e-tempered envelope.
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Sketch of proofs

Sketch of proof: Statistical properties, effective intrinsic ergodicity

Markov shift defined by a countable directed graph G = (V, E):
Y ={ac€ VZ:YneZ (an, ans1) € E} with o : (an)nez — (@nt1)nez

Definition (Vere-Jones,Gurevi&,Sarig,...)
The Markov shift X is SPR if there is Vo € V, hy < htop(c), 70 > 0 such that

Vi € Perg(o) () > ho = p{a€X:ap € Vo}) > 10

Theorem (Bowen, Cyr-Sarig, Gouézel, Parry-Pollicott, Ruelle, Ruhr-Sarig, Sinai,...)
MMEs of an SPR Markov shift have “good statistical properties”

Theorem (Sarig, Benovadia)
For all f € Diff""(M?) and x > 0:
3 Markov shift (X,0) and 7 : X S Mfor=mnoo with “good properties” for P, (f)

Lemma. C(x) := Oseledets-Pesin; g(x) := limsup,_, ., e~ 21"l || C(£"(x)) ||
VK >0{ap:a € X% 7(a)= x with g(x) < K} is finite
Lemma. If x € A (C,€), then g(x) < qo(x, €, C)

Theorem. If f is SPR then it has good statistical properties wrt its MMEs

J. Buzzi Strong Positive Recurrence for Diffeomorphisms April 2023

12/14



Conclusion

Conclusion: Strong Positive Recurrence

Summary
o A notion for Diff** (M9) giving:

o existence and finiteness of MMEs
o effective intrinsic ergodicity
e good statistical properties of MMEs

o characterized in terms of exponents of measures with h(u) — heop(f)
o It holds for all Diff*°(M?) with hp(f) > 0
Comments
@ generalization to equilibrium measures for ¢» € CT(M): yes, SRB??7?
o C" smoothness for measures with h(p) > log Lip(f)/r??? (see Burguet)
@ Entropy-hyperbolic diffeomorphisms in high dimension???

Alternate route via anisotropic Hilbert spaces???
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