Strong Positive Recurrence for Diffeomorphisms

Jérôme BUZZI (CNRS Orsay) https://jbuzzi.wordpress.com

with Sylvain CROVISIER and Omri SARIG

Penn State University

November 3rd, 2023

About Todd Fisher: from mathematics

Theme: nature of entropy of diffeomorphisms and role of dominated splittings

- when is the entropy locally constant? When robustly unstable?
- what are its local/global and flexible/rigid sources?
- 2007: both working with Mike Boyle at Maryland (entropy vs partial hyperbolicity)
- 2008: first visit to Utah
- 2012: with M. Sambarino, C. Vasquez, *MMEs for certain partially hyperbolic, derived from Anosov systems,* ETDS, 17pp
- 2013: Entropic stability beyond partial hyperbolicity, JMD, 26pp
- 2017: with S. Crovisier, *Local perturbations of conservative C*¹ *diffeomorphisms,* Nonlinearity, 24pp
- 2018: with S. Crovisier, *The entropy of C*¹ *diffeomorphisms without a dominated splitting*, 50pp
- 2021: with K. Burns, N. Sawyer, *Phase transitions for the geodesic flow of a rank one surface with nonpositive curvature*, 9pp
- 2022: with A. Tahzibi, A dichotomy for MMEs near time-one maps of transitive Anosov flows, 34pp
- 2022: last visit to Paris

About Todd Fisher: to friendship

Working with Todd:

with his family:

- Exponential mixing for MMEs of surface diffeomorphisms
- 2 SPR property for diffeomorphisms
- 3 Statistical properties of SPR diffeomorphisms
- MMEs of SPR diffeomorphisms
- 5 Sketch of proofs

6 Conclusion

Spectral gap: Exponential mixing for smooth surface diffeomorphisms

 $f \in \operatorname{Diff}^r(M)$ with M a closed d-dimensional manifold and r>1

Classical variational principle: $h_{top}(f) = \sup_{\mu \in \mathbb{P}_{erg}(f)} h(\mu)$

A measure maximizing the entropy (MME) is $\mu \in \mathbb{P}_{ ext{erg}}(f)$ with $h(\mu) = h_{ ext{top}}(f)$

If $r = \infty$: \exists MME exists (Newhouse) If $r = \infty$, d = 2, $h_{top}(f) > 0$, top. mixing: \exists ! Bernoulli MME (B-Crovisier-Sarig)

Theorem (B.-Crovisier-Sarig) $f \in \text{Diff}^{\infty}(M^{d=2})$ topological mixing and $h_{\text{top}}(f) > 0$.

Then the MME μ is exponentially mixing for Hölder functions, ie

For any $0 < \alpha \leq 1$, there is $\kappa < 1$ such that

$$\forall u, v \in C^{\alpha}(M) \int u \circ f^{n} \cdot v \, d\mu - \int_{M} u \, d\mu \int_{M} v \, d\mu = O(\kappa^{n})$$

Proof

SPR as a new notion of hyperbolicity

- sufficiently relaxed to hold beyond uniform hyperbolicity
- strong enough to retain "spectral gap" properties

Nonuniformly hyperbolic measures

 $f \in \text{Diff}^r(M^d)$ with r > 1 and M a closed Riemannian manifold and $d \ge 2$ $\mu \in \mathbb{P}_{\text{erg}}(f)$ ergodic (invariant Borel probability) measure

Definition (Oseledets)

Lyapunov spectrum: $\sigma_L(x) := \{\lim_{n\to\infty} \frac{1}{n} \log \|D_x f^n \cdot v\| : v \in T_x M \setminus 0\}$ Oseledets spaces: $E_x^{\lambda} := \{v \in T_x M \setminus 0 : \lim_{n\to\pm\infty} \frac{1}{n} \log \|D_x f^n v\| = \lambda\} \cup \{0\}$ Lyapunov exponents: $\lambda^1(x) \ge \lambda^2(x) \ge \cdots \ge \lambda^d(x) \ \lambda^j(\nu) := \int \lambda^j(x) \ d\nu$ for $\nu \in \mathbb{P}(f)$

Definition (Pesin hyperbolicity)

 $\nu \in \mathbb{P}(f)$ is hyperbolic if ν -ae $0 \notin \sigma_L(x)$ $\nu \in \mathbb{P}(f)$ is hyperbolic of saddle type if additionally ν -ae $\lambda^1(x) > 0 > \lambda^d(x)$

Key observation (Katok) If $\mu \in \mathbb{P}_{erg}(f)$, $h(\mu) > 0$ and d = 2, then (Ruelle) μ hyperbolic saddle type More precisely, $\lambda^{1}(\mu) > h(\mu) > 0 > -h(\mu) > \lambda^{2}(\mu)$

Pesin theory of nonuniform hyperbolicity

Definition

For $0 < \epsilon < \chi$ and $C \ge 1$, the **Pesin block** $\Lambda_{\chi}(C, \epsilon)$ is the set of $x \in M$ for which there is $T_x M = E \oplus F$ satisfying:

$$\begin{aligned} \forall n \geq 0 \ \forall k \in \mathbb{Z} \quad \|Df^n|_{Df^k(E)}\| \leq C e^{\epsilon|k|} \exp\left(-\chi n\right) \\ \forall n \geq 0 \ \forall k \in \mathbb{Z} \quad \|Df^{-n}|_{Df^k(F)}\| \leq C e^{\epsilon|k|} \exp\left(-\chi n\right) \end{aligned}$$

Fact

$$\Lambda_{\chi}(\mathcal{C},\epsilon)$$
 is compact with $f^{\pm 1}(\Lambda_{\chi}(\mathcal{C},\epsilon)) \subset \Lambda_{\chi}(\mathcal{C}e^{\epsilon},\epsilon)$

Invariant $K \Subset M$ is hyperbolic iff $K \subset \Lambda_{\chi}(C, \epsilon)$ for some $\chi > 0$ and arb.small $\epsilon > 0$

Lemma (Oseledets-Pesin reduction)

If
$$\mu \in \mathbb{P}(f)$$
 χ -hyperbolic ie μ -ae { $\lambda^{j}(x) : j = 1, ..., d$ } $\cap [-\chi, \chi] = \emptyset$ then
 $\forall \epsilon > 0 \exists C > 1 \ \mu(\Lambda_{\chi}(C, \epsilon)) > 1 - \epsilon$

Theorem (Pesin local invariant manifolds)

For $\chi > 0$ and $0 < \epsilon \le \epsilon(f, \chi)$, $W^{s}(x)$, $W^{u}(x)$ are C^{r} -immersions, C^{0} on $x \in \Lambda_{\chi}(C, \epsilon)$

SPR property for diffeomorphisms

 $f \in \text{Diff}^r(M^d)$ with r > 1 and M closed d-dimensional manifold

Definition

For $0 < \epsilon < \chi$ and $C \ge 1$, the Pesin block $\Lambda_{\chi}(C, \epsilon)$ is the set of $x \in M$ for which there is $T_x M = E \oplus F$ satisfying:

$$egin{array}{lll} \forall n \geq 0 \; orall k \in \mathbb{Z} & \|Df^n|_{Df^k(E)}\| \leq Ce^{\epsilon|k|} \exp\left(-\chi n
ight) \ \forall n \geq 0 \; orall k \in \mathbb{Z} & \|Df^{-n}|_{Df^k(F)}\| \leq Ce^{\epsilon|k|} \exp\left(-\chi n
ight) \end{array}$$

Definition (B-Crovisier-Sarig)

 $f \in \text{Diff}^{r}(M^{d})$ is strongly positively recurrent (or SPR) if there is $\chi > 0$ such that For any $\epsilon > 0$, there are $h < h_{\text{top}}(f)$ and $C, \tau > 0$ such that $\forall \mu \in \mathbb{P}_{\text{erg}}(f) \ h(\mu) > h \implies \mu(\Lambda_{\chi}(C, \epsilon)) > \tau$

Statistical properties

Theorem (B-Crovisier-Sarig) Let $f \in \text{Diff}^{1+}(M^d)$ be SPR with MME μ ($\mu \in \mathbb{P}_{erg}(f)$ and $h(\mu) = h_{top}(f)$) If μ is strongly mixing then it is exponentially mixing for Hölder functions, ie For any exponent $0 < \alpha \le 1$, there is $\kappa < 1$ such that

 $\forall u, v \in C^{\alpha}(M) \int u \circ f^{n} \cdot v \, d\mu - \int_{M} u \, d\mu \int_{M} v \, d\mu = O(\kappa^{n})$

Theorem (B-Crovisier-Sarig)

Let
$$f\in {
m Diff}^{1+}(M^d)$$
 be SPR with $\mu\in {\mathbb P}_{
m erg}(f)$ such that $h(\mu)=h_{
m top}(f)$

If μ is strongly mixing then, for Hölder-continuous functions we have:

- Central limit theorem (CLT)
- Identification of the variance and characterization of its vanishing
- Large deviations
- Almost sure invariance principle and its consequences (law of iterated logarithm, arcsine law, law of records)

Remark. There are statements for general (ie periodic) ergodic MMEs

MMEs of SPR diffeomorphisms: existence and finiteness

Theorem (B-Crovisier-Sarig) Any SPR $f \in \text{Diff}^{1+}(M^d)$ admits a nonzero, finite number of ergodic MMEs

Proof.

Finiteness:

- From BCS' irreducible symbolic dynamics, each MME belongs to a distinct equivalence class for *homoclinic relation*
- SPR implies all MMEs see a common Pesin set
- A Pesin set can meet only finitely many measured homoclinic classes

Existence:

- Show that Sarig/Ben Ovadia's coding is SPR as a Markov shift
- It follows it has some MME
- Project it to the diffeo

Remark

For d = 2 new proof of the finiteness and existence of MMEs

SPR property and Lyapunov exponents

 $\lambda^1(x) \geq \cdots \geq \lambda^d(x)$: pointwise Lyapunov exponents (repeated according to multiplicity) $\lambda^j(\mu) := \int_X \lambda^j(x) d\mu$: average Lyapunov exponents (repeated according to multiplicity) $J^u(\mu) := \sum_{j=1}^d \max(\lambda^j(\mu), 0)$: sum of positive exponents

Theorem (B-Crovisier-Sarig) Let $f \in \text{Diff}^{1+}(M^d)$ of a closed manifold

f is SPR if and only if $\exists \chi > 0$ such that the following holds:

For any $\mu_k \in \mathbb{P}_{erg}(f)$ with $h(\mu_k) \to h_{top}(f)$ and $\exists \lim_n \mu_n =: \mu$

• $\exists i = i(\mu)$ such that $\lambda^i(x) > \chi > 0 > -\chi > \lambda^{i+1}(x) \mu$ -a.e.

2 $\lim_k J^u(\mu_k)$ exists and is equal to $J^u(\mu)$

Theorem (B-Crovisier-Sarig) Any $f \in \text{Diff}^{1+}(M^2)$ SPR with $h_{\text{top}}(f) > 0$ with unique MME m satisfies: There is C > 0 such that for all $\mu \in \mathbb{P}_{\text{erg}}(f)$, $|J^u(\mu) - J^u(m)| \le C\sqrt{h_{\text{top}}(f) - h(\mu)}$

SPR property and Lyapunov exponents

For d = 2 using Ruelle's inequality:

Theorem (B-Crovisier-Sarig) Let $f \in \text{Diff}^{1+}(M^2)$ of a closed surface with $h_{\text{top}}(f) > 0$ f is SPR if and only if the following holds:

(*) For any
$$\mu_k \in \mathbb{P}_{erg}(f)$$
, $h(\mu_k) \to h_{top}(f)$ and $\exists \lim_n \mu_n =: \mu$
 $\lim_k \lambda^1(\mu_k)$ exists and is equal to $\lambda^1(\mu)$

Theorem (B-Crovisier-Sarig (Invent. Math. 2022)) For $f \in \text{Diff}^{\infty}(M^2)$, if $\lim_k h(\mu_k) = h_{\text{top}}(f) > 0$ then $h(\mu) = h_{\text{top}}(f)$ and $\lim_k \lambda^1(\mu_k) = \lambda^1(\mu)$

Corollary (B-Crovisier-Sarig)

Any $f \in \text{Diff}^{\infty}(M^2)$ with $h_{\text{top}}(f) > 0$ is SPR

Sketch of proof: Statistical properties, effective intrinsic ergodicity

Markov shift defined by a countable directed graph G = (V, E): $\Sigma := \{ \alpha \in V^{\mathbb{Z}} : \forall n \in \mathbb{Z} \ (\alpha_n, \alpha_{n+1}) \in E \}$ with $\sigma : (\alpha_n)_{n \in \mathbb{Z}} \mapsto (\alpha_{n+1})_{n \in \mathbb{Z}}$

Definition (Vere-Jones, Gurevič, Sarig,...) The Markov shift Σ is **SPR** if there is $V_0 \Subset V$, $h_0 < h_{TOP}(\sigma)$, $\tau_0 > 0$ such that $\forall \mu \in \mathbb{P}_{erg}(\sigma) \ h(\mu) > h_0 \implies \mu(\{\alpha \in \Sigma : \alpha_0 \in V_0\}) > \tau_0$

Theorem (Bowen, Cyr-Sarig, Gouëzel, Parry-Pollicott, Ruelle, Ruhr-Sarig, Sinai,...) MMEs of an SPR Markov shift have "good statistical properties"

Theorem (Sarig, Benovadia) For all $f \in \text{Diff}^{1+}(M^d)$ and $\chi > 0$: \exists Markov shift (Σ, σ) and $\pi : \Sigma \xrightarrow{C^{\alpha}} M f \circ \pi = \pi \circ \sigma$ with "good properties" for $\mathbb{P}_{\chi}(f)$

Lemma. $C(x) := \text{Oseledets-Pesin}; q(x) := \limsup_{n \to \infty} e^{-2\epsilon |n|} ||C(f^n(x))^{-1}||$ $\forall K > 0 \{ \alpha_0 : \alpha \in \Sigma^{\#}, \pi(\alpha) = x \text{ with } q(x) > K \} \text{ is finite}$

Lemma. If $x \in \Lambda_{\chi}(C, \epsilon)$, then $q(x) \ge q_0(\chi, \epsilon, C)$

Theorem. If f is SPR then it has good statistical properties wrt its MMEs

J. Buzzi

Conclusion: Strong Positive Recurrence

Summary

- SPR is a notion for $\text{Diff}^{1+}(M^d)$ giving:
 - existence and finiteness of MMEs
 - good statistical properties of MMEs
- characterized in terms of exponents of measures with $h(\mu) \rightarrow h_{top}(f)$
- It holds for all $\mathrm{Diff}^\infty(M^2)$ with $h_{\mathrm{top}}(f)>0$

Comments

- how common is SPR in Diff^{∞}(M^d), $d \ge 3$?
- C^r smoothness for measures with $h(\mu) > \log \operatorname{Lip}(f)/r$? (see Burguet)
- generalization to equilibrium measures for $\psi \in C^+(M)$: yes but SRB?